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Abstract— Coded caching is an effective technique to decongest
the amount of traffic in the backhaul link. In such a scheme, each
file hosted in the server is divided into a number of packets to
pursue a low broadcasting rate based on the designed placements
at each user’s cache. However, the implementation complexity of
this scheme increases with the number of packets. It is important
to design a scheme with a small subpacketization level and a
relatively low transmission rate. Recently, placement delivery
array (PDA) was proposed to address the subpacketization
bottleneck of coded caching. This paper investigates the design
of PDA from a new perspective, i.e., the injective arc coloring of
regular digraphs. It is shown that the injective arc coloring of a
regular digraph can yield a PDA with the same number of rows
and columns. Based on this, a new class of regular digraphs are
defined and the upper bounds on the injective chromatic index of
such digraphs are derived. Consequently, four new coded caching
schemes with a linear subpacketization level and a relatively small
transmission rate are proposed, one of which generalizes the
existing scheme for the scenario with a more flexible number of
users.

Index Terms— Coded caching, placement delivery array, reg-
ular digraph, injective arc coloring, subpacketization.

I. INTRODUCTION

THE dramatic increase of video streaming requests can
easily cause severe network congestions during the peak-

traffic times. One possible solution is to exploit the off-peak
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network resources, such as to cache some of the possibly
demanded contents in users’ local memories, i.e., the so
called caches. This can help decrease the network traffic
when the cached contents are requested. The gain offered
by this approach is called local gain, which depends on the
size of local caches. A more effective way of caching is
through coding, which was first proposed by Maddah-Ali and
Niesen [1]. It reduces the network pressure during the peak
times by strategically designing the contents cached into the
network users and the broadcast messages to obtain the global
gain. In the centralized coded caching system, a central server
containing N files of the same size is connected to K users
over a noiseless shared link. Each user has a cache memory
with a size of M files, where M < N . It operates in two
phases: the placement phase during the off-peak times and
the delivery phase during the peak times. In the placement
phase, each file is divided into F equal packets, and each user’s
cache is filled with some form of these packets without any
prior knowledge of future demands. The quantity F is referred
to as the subpacketization level. In the delivery phase, each
user reveals its requested file to the server. After receiving the
user demands, the server transmits some coded symbols over a
noiseless shared link to all the users so that their demands can
be satisfied with the assistance of the locally cached contents.
Normalizing the minimal worst case transmission load by the
size of file would result in the so called transmission rate R,
i.e., the minimum number of files that must be communicated
so that any possible demands can be satisfied. Under such
paradigm, if the packets are cached directly without coding
in the placement phase, it is called an uncoded placement;
otherwise, it is called a coded placement. We summarize the
prior work as follows.

A. Prior Work

The original coded caching scheme proposed by Maddah-
Ali and Niesen [1] is realized by a combinatorial design in the
placement phase and a linear network coding in the delivery
phase, which is referred to as the MN scheme. It achieves
an optimal transmission rate under the constraints of uncoded
placement and K ≤ N [2]. Observing that there exist some
redundant transmissions in the MN scheme when a file is
requested by several users, Yu et al. [3] proposed a scheme
that improves upon the MN scheme and achieves an optimal
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transmission rate under the constraint of uncoded placement.
They further showed that the multiplicative gap between the
optimal caching scheme with uncoded placement and any
caching scheme with coded placement is at most two [4]. The
MN scheme has been extensively studied over other network
scenarios, such as the decentralized caching [5], the multi-level
popularity and access [6], the combination networks [7], the
device-to-device (D2D) caching systems [8] and the arbitrary
multiserver linear networks [9].

There exist some work on reducing the subpacketization
level of the MN scheme, but they usually trade it with
the transmission rate [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27].
To the best of our knowledge, most existing schemes that
aim to reduce the subpacketization level are constructed under
uncoded placement. With a large number of users, the tradeoff
between the subpacketization level and the transmission rate
was first investigated by Shanmugam et al. in [17]. However,
for an arbitrary number of users, it remains challenging to
characterize such tradeoff. It was shown in [18] that for
the fixed transmission rate, the MN scheme has a minimum
subpacketization level. It can be seen that its subpacketization
level increases exponentially with the number of users, which
makes it impractical for large networks. Therefore, it is
important to reduce the subpacketization level of the MN
scheme, while maintaining a relatively low transmission rate.
In particular, Yan et al. [15] represented the coded caching
scheme by an array called the placement delivery array (PDA)
that is proved to be effective for reducing the subpacketization
level. It has been shown that the MN scheme can be considered
as a special class of PDAs. Through constructing PDAs,
two classes of coded caching schemes were proposed with
a reduced subpacketization level over that of the MN scheme.
But they yield a slightly increased transmission rate. Since
then, PDA has been utilized as a systematic approach to design
the coded caching schemes that yield a low subpacketization
level [16], [18], [19], [20], [21], [22], [23], [24], [25], [26].
Recently, the multiple antennas coded caching scenario was
also considered to reduce the subpacketization level [28], [29],
[30]. It is another important research direction in this area.
Motivated by the PDA based coded caching, Yang et al. [31]
proposed a transformation approach to construct a multiple
antennas coded caching scheme from a special class of
PDAs. A multiple antennas coded caching scheme with a low
subpacketization level can be designed through constructing
proper PDAs. Other combinatorial methods for reducing the
subpacketization include Ruzsa-Szemerédi graphs [14], pro-
jective geometry and line graphs [11], hypergraphs [13] and
combinatorial design [10]. Table I summarizes the existing
schemes with the advantages in either the subpacketization
level or the transmission rate.

One of the important questions in coded caching design
is how to realize a linear subpacketization level so that the
subpacketization increases linearly with the number of users.
It has been shown that with a small memory ratio requirement,
a coded caching scheme with a linear subpacketization level
can be constructed at a near constant transmission rate [14].

However, it requires an extremely large number of users. The
MN scheme achieves F = K when M

N = 1
K , but the trans-

mission rate would be R = K−1
2 . The schemes of [24] can

yield a linear subpacketization level and a small transmission
rate. However, they require the number of users to be some
non-flexible values. A more recent scheme of [11] achieves
a linear subpacketization level but with a larger transmission
rate and a non-flexible user number. Therefore, most coded
caching schemes that yield a linear subpacketization level
are disadvantageous in either the number of users or the
transmission rate.

B. Contribution and Organization of This Work

This paper considers the PDA construction from the per-
spective of graph coloring, aiming to design a coded caching
scheme that can work for a flexible number of users, mean-
while achieve a linear subpacketization level and a rela-
tively small transmission rate. Our key technical contributions
include:
•We propose the PDA design for coded caching through the

injective arc coloring of regular digraphs. It is shown that the
injective arc coloring of a regular digraph can yield a PDA
with the same number of rows and columns. This enables
the design of PDA to utilize the existing structures of regular
digraphs. By observing that the strong edge coloring of regular
graphs can be viewed as a special injective arc coloring of
regular digraphs, a new coded caching scheme with a linear
subpacketization level can be obtained from the existing strong
edge coloring of unitary Cayley graphs. This scheme will be
characterized in Theorem 4.
• We also define a new class of regular digraphs and

derive upper bounds on the injective chromatic index of such
digraphs. Consequently, a new coded caching scheme that can
accommodate a flexible number of users is obtained. It yields
a linear subpacketization level and a relatively small transmis-
sion rate. This scheme will be characterized in Theorem 2.
Based on the proposed coded caching scheme, this research
finds out that some packets cached by the users have no multi-
cast opportunities in the delivery phase. By utilizing the max-
imum distance separable (MDS) code in the placement phase,
a new coded caching scheme with a smaller subpacketization
level and memory ratio is further proposed. It generalizes the
scheme of [24] and supports a more flexible number of users.
This scheme will be characterized in Theorem 5.

The rest of this paper is organized as follows. In Section II,
we briefly review the background of the centralized coded
caching system. The relationship between PDA and injective
arc coloring of regular digraphs is presented in Section III.
Section IV proposes four new PDA schemes that are
designed through the injective arc coloring of regular digraphs.
Their performance analyses are given in Section V. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL AND THE PDA

This section presents the coded caching system model and
the PDA. Some key notations are introduced as follows.
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TABLE I
SUMMARY OF THE EXISTING CODED CACHING SCHEMES

Notations: Let calligraphic symbols, bolded capital let-
ters and bolded lower-case letters denote sets, arrays and
vectors, respectively. Symbol ⊕ represents the exclusive-
or (XOR) operation. Let Zp denote the ring of integers
modulo p. Let Znp further denote a set of vectors whose
elements are obtained by n-fold Cartesian product of Zp,
i.e., Znp = {x = (x0, x1, . . . , xn−1) | (x0, x1, . . . , xn−1) ∈
Zp × Zp × · · · × Zp︸ ︷︷ ︸

n

}. We use | · | to denote the cardinality of

a set. Let N+ denote the set of positive integers. The set of
consecutive integers is denoted as [x : y] = {x, x+ 1, . . . , y}.
Given an array P, let P[i, j] denote its entry of row i and
column j. Let

(
[0:m−1]

t

)
denote the collection of all subsets

of [0 : m − 1] with size t, i.e.,
(
[0:m−1]

t

)
= {S | S ⊆

[0 : m − 1], |S| = t}. For a length-m vector x and a set
S ⊆ [0 : m−1], let x|S denote a vector obtained by taking the
coordinate indexed by j ∈ S. Finally, the vectors in examples
are written as strings, e.g., (1, 1, 1, 1) is written as 1111.

A. Centralized Coded Caching System

In a centralized coded caching system, a server containing
N files of the same size is connected to K users through
a noiseless shared link, as shown in Fig. 1. Each user is
equipped with a dedicated cache with a size of M files,
where M < N . The N files and K users are denoted by
W = {W0,W1, . . . ,WN−1} and K = [0 : K−1], respectively.
An F -division (K,M,N) coded caching scheme consists of
two phases, which are described as follows.
• Placement Phase: Each file is divided into F equal

packets i.e., Wn = {Wn,j |j ∈ [0 : F − 1]}, n ∈ [0 : N − 1].
The server places some packets (or coded packets) directly into
each user’s cache without any prior knowledge of the demands
in the delivery phase. Let Zk denote the contents cached by
user k, where k ∈ K. The size of Zk cannot be greater than
the capacity of each user’s cache memory size M .

Fig. 1. Coded caching system.

• Delivery Phase: Each user requests an arbitrary file from
W . The request vector is denoted by d = (d0, d1, . . . , dK−1),
i.e., user k requests file Wdk

, where k ∈ K and dk ∈
[0 : N − 1]. Once the server receives the request vector d,
it broadcasts a signal of at most RF packets such that all the
users can correctly decode their requested files together with
the cached contents.

B. Placement Delivery Array

Let us review the definition of PDA that can be used to
characterize both the placement phase and the delivery phase.

Definition 1 [15]: Given K,F,Z, S ∈ N+, an F ×K array
P = (P[i, j]), where i ∈ [0 : F − 1], j ∈ [0 : K − 1], and
P[i, j] ∈ [0 : S − 1] ∪ {∗}, is called a (K,F,Z, S) PDA if it
satisfies the following conditions:

C1. Symbol “∗” appears exactly Z times in each column;
C2. Each integer of [0 : S − 1] appears at least once in the

array;
C3. For any two distinct entries P[i1, j1] and P[i2, j2],

P[i1, j1] = P[i2, j2] = s is an integer only if
(a). i1 ̸= i2, j1 ̸= j2, i.e., they lie in distinct rows and

distinct columns;
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(b). P[i1, j2] = P[i2, j1] = ∗, i.e., the corresponding
2× 2 subarray formed by rows i1, i2 and columns j1, j2 must
be in one of the following forms(

s ∗
∗ s

)
,

(
∗ s
s ∗

)
.

Algorithm 1 was proposed to realize the PDA based coded
caching schemes. Given a (K,F,Z, S) PDA P with column
indices representing the users and row indices representing
the packets, P[j, k] = ∗ implies the server has placed the jth
packet of all the files into the cache of user k. Condition C1
of Definition 1 implies that each user has the same memory
size and the memory ratio is M

N = Z
F . If P[j, k] = s, where

s ∈ [0 : S − 1], it indicates that user k does not cache the jth
packet of all the files. The linear combination of the requested
packets indicated by s will be broadcast by the server at time
slot s. Condition C3 of Definition 1 ensures the decodability,
since it has cached all the other packets in the multicast
message except its requested one. Finally, Condition C2 of
Definition 1 implies that the number of messages transmitted
by the server is exactly S and the transmission rate is R = S

F .
Furthermore, the coding gain in each time slot s ∈ [0 : S−1],
denoted by gs, is the occurrence number of integer s in P,
since the coded packet broadcast at time slot s is beneficial
to gs users. Based on Algorithm 1, an F -division (K,M,N)
coded caching scheme can be characterized by Lemma 1.

Algorithm 1 Coded Caching Scheme Based on PDA [15]
1: Procedure Placement (P, W)
2: Split each file Wn ∈ W into F packets as Wn = {Wn,j |
j ∈ [0 : F − 1]}.
3: For k ∈ K do
4: Zk ← {Wn,j | P[j, k] = ∗,∀n ∈ [0 : N − 1]};
5: Procedure Delivery (P,W,d)
6: For s = 0, 1, . . . , S − 1 do
7: Server sends ⊕P[j,k]=s,j∈[0:F−1],k∈[0:K−1]Wdk,j .

Lemma 1 [15]: Given a (K,F,Z, S) PDA, there always
exists an F -division (K,M,N) coded caching scheme with a
memory ratio of M

N = Z
F and a transmission rate of R = S

F .
The following example demonstrates this property.
Example 1: Given a (4, 4, 2, 4) PDA P, and based on

Algorithm 1, a 4-division (4, 2, 4) coded caching scheme can
be obtained as

P =


0 ∗ ∗ 3
∗ 1 2 ∗
1 ∗ ∗ 2
∗ 0 3 ∗

 . (1)

• Placement Phase: Each file Wn is divided into four
packets, i.e., Wn = {Wn,0,Wn,1,Wn,2,Wn,3}, where n ∈
[0 : 3]. The contents cached by each user are

Z0 = {Wn,1,Wn,3 | n ∈ [0 : 3]},
Z1 = {Wn,0,Wn,2 | n ∈ [0 : 3]},
Z2 = {Wn,0,Wn,2 | n ∈ [0 : 3]},
Z3 = {Wn,1,Wn,3 | n ∈ [0 : 3]}.

• Delivery Phase: Let us assume that the request vector
is d = (0, 1, 2, 3). The signals sent by the server at the four
time slots (TSs) are listed as follows. TS-0: W0,0 ⊕ W1,3;
TS-1:W0,2 ⊕W1,1; TS-2: W2,1 ⊕W3,2; TS-3: W2,3 ⊕W3,0.
Each user can then reconstruct its required file. E.g., user
0 requires W0 and it has cached W0,1 and W0,3. At TS-0,
it can obtain W0,0 with its received coded packet W0,0⊕W1,3,
where W1,3 was cached. At TS-1, it can obtain W0,2 with its
received coded packet W0,2 ⊕W1,1, where W1,1 was cached.
Hence, the transmission rate is R = 4

4 = 1.

III. INJECTIVE ARC COLORING OF REGULAR DIGRAPHS
AND ITS RELATION TO PDA

This section investigates the design of a PDA with the
same number of rows and columns through the injective arc
coloring of a regular digraph. Some graph theoretic notations
are reviewed as follows. Let G = G(V, E) denote a simple
undirected graph with vertex set V and edge set E . The degree
of a vertex v in a graph G is denoted by d(v). A graph G is
called r-regular if d(v) = r for all v ∈ V . Let D = D(V, E)
denote a digraph with vertex set V and arc set E . For a
vertex v ∈ V , we denote the indegree and outdegree of v by
d−(v) and d+(v), respectively. If d−(v) = d+(v) = r for
each vertex v ∈ V , D is called a r-regular digraph. In this
paper, we focus on the regular digraph with reverse arcs but
without a directed self loop. For clarity, we introduce several
definitions of graph coloring.

Definition 2 [32]: For a graph G, a proper edge coloring
is an assignment of colors to each edge of a graph such
that no two edges with a common endpoint receive the same
color. The smallest number of colors needed in a proper edge
coloring of a graph G is called the chromatic index of G.

Definition 3 [32]: A strong edge coloring is a proper edge
coloring, with the further condition that no two edges with the
same color lie on a path of length three. The strong chromatic
number is the minimum number of colors that allow a strong
edge coloring, denoted by χs(G).

The concept of injective edge coloring was first introduced
by Cardoso et al. [33]. Its definition is described as follows.

Definition 4 [33]: An edge coloring of a graph G is injec-
tive if any two edges e and f that are at a distance of exactly
one (i.e., there exists an edge between two edges e and f )
or in a common triangle receive distinct colors. The injective
chromatic index of G, denoted by χi(G), is the minimum
number of colors needed for an injective edge coloring of G.

Based on Definitions 3 and 4, it can be seen that the
condition of strong edge coloring of a graph G imposes more
constraints than that of injective edge coloring. E.g., given
a path P = v0v1v2v3 with vertex set V = {v0, v1, v2, v3},
if edges v0v1, v1v2 and v2v3 are assigned with colors 0,
1 and 2, respectively, this coloring is a strong edge coloring
of P . It can be seen that this coloring is also an injective edge
coloring of P . If edges v0v1, v1v2 and v2v3 are assigned with
colors 0, 0 and 1, respectively, this is already an injective edge
coloring. However, it is not a strong edge coloring. Therefore,
a strong edge coloring of a graph G is an injective edge
coloring, but not vice versa. In this paper, we extend the
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Fig. 2. 3-regular digraph with the number of injective arc coloring of 6.

definition of injective edge coloring of graph G to the regular
digraph D as follows.

Definition 5: An arc coloring of a regular digraph D is
injective if any two arcs e and f that are at a distance of
exactly one (i.e., there exists an arc between two arcs e and
f in a directed path) or in a common directed triangle receive
distinct colors. The injective chromatic index of D, denoted
by χi(D), is the minimum number of colors needed for an
injective arc coloring of D.

The following example illustrates the above definition.
Example 2: Given the arc-colored regular digraph of Fig. 2,

and based on Definition 5, it can be observed that this coloring
is injective since any two arcs have distinct colors if they are
at a distance of exactly one or in a common directed triangle.

Based on the above introduction, given an injective arc-
colored regular digraph D with vertex set V and arc set E ,
if the arcs in E are colored by colors 0, 1, . . . , S − 1, we can
construct a |V| × |V| array P = (P[vj , vk]) (vj , vk ∈ V)
containing alphabet set [0 : S − 1] ∪ {∗} as

P[vj , vk] =

{
∗, if (vj , vk) /∈ E ;
s, if (vj , vk) ∈ E and it is colored by s.

(2)

The following Example 3 is further developed based on
Example 2, in order to illustrate the above observation.

Example 3: Let D denote an arc-colored regular digraph
with vertex set V and arc set E , as shown in Fig. 2. Based on
(2), for any vj , vk ∈ V , we have P[vj , vk] = ∗, if (vj , vk) /∈ E ;
and P[vj , vk] = s, if (vj , vk) ∈ E and it is colored by s. E.g.,
we have P[v0, v0] = ∗ since D has no directed self loop; and
P[v0, v1] = 1 since the arc (v0, v1) is assigned with color 1.
As a result, the following array P can be obtained. It can be
seen that P is a (8, 8, 5, 6) PDA.

P =



v0 v1 v2 v3 v4 v5 v6 v7
v0 ∗ 1 3 5 ∗ ∗ ∗ ∗
v1 0 ∗ ∗ ∗ 3 5 ∗ ∗
v2 2 ∗ ∗ ∗ 1 ∗ 5 ∗
v3 4 ∗ ∗ ∗ ∗ 1 3 ∗
v4 ∗ 2 0 ∗ ∗ ∗ ∗ 5
v5 ∗ 4 ∗ 0 ∗ ∗ ∗ 3
v6 ∗ ∗ 4 2 ∗ ∗ ∗ 1
v7 ∗ ∗ ∗ ∗ 4 2 0 ∗


.

Based on the above investigation, the following theorem that
describes the relationship between the injective arc coloring of
a regular digraph and a PDA that has the same number of rows
and columns can be reached.

Theorem 1: For any injective arc-colored regular digraph D
with K vertices and K−Z indegrees, if the arcs of D can be
colored by the colors 0, 1, . . . , S − 1, the corresponding array
P is a (K,K,Z, S) PDA.

Proof: Given an injective arc coloring of regular digraph
with K vertices, one needs to show that the resulting array
satisfies the definition of PDA. Since D is a regular digraph,
each vertex has the same indegree and outdegree. Let us
assume that the indegree of each vertex is K − Z. Based
on (2), each column of P has Z “∗”s. Furthermore, it is
impossible for an entry to appear more than once in each row
or each column. This is because any two arcs with the same
head or tail will receive distinct colors due to its injective
arc coloring. If there exist two distinct entries such that
P[vj1 , vk1 ] = P[vj2 , vk2 ] = s, arcs (vj1 , vk1) and (vj2 , vk2)
are colored by s. Note that this coloring is an injective arc
coloring and D is a digraph without a directed self loop.
This implies that (vk1 , vj2) and (vk2 , vj1) are not arcs of D.
Since the regular digraph has reverse arcs, it can be seen
that both (vj1 , vk2) and (vj2 , vk1) are not the arcs of D, i.e.,
P[vj1 , vk2 ] = P[vj2 , vk1 ] = ∗. Hence, the array P defined in
(2) is a (K,K,Z, S) PDA.

This provides a new method to construct PDAs from the arc
injective coloring of regular digraphs. The PDA characterized
by Theorem 1 can realize a coded caching scheme with a
transmission rate of R = S

K . Given K and Z, it is desirable
to obtain a PDA scheme that can yield a transmission rate
as small as possible. This implies that the number of colors
S needed for an injective arc coloring should be as small
as possible. Therefore, it is important to properly construct
a regular digraph and determine its optimal or near optimal
number of injective arc coloring, which will be discussed in
the following Section IV.

IV. THE NEW PDA SCHEMES

This section proposes three new PDA constructions via
injective arc coloring of regular digraphs. The designs can
realize a coded caching scheme that supports a flexible number
of users with a linear subpacketization level and a relatively
small transmission rate.

A. A New Construction of Regular Digraphs and Their
Injective Arc Colorings

This subsection defines a new class of regular digraphs and
proposes a novel arc coloring rule for them such that their
resulting colorings are injective. Given two vectors x and y, the
Hamming distance between x and y is defined as the number
of coordinates that x and y differ, and denoted as dH(x, y).
Consequently, a regular digraph D̂ with the number of vertices
pn0
0 pn1

1 · · · p
nm−1
m−1 can be defined as follows.

Definition 6: Given any w, ni,m ∈ N+ and distinct pos-
itive integers p0, p1, . . . , pm−1 with pi ≥ 2 and w < n0 +
n1 + · · ·+ nm−1 for i ∈ [0 : m− 1], the vertex set V and arc
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set E of D̂ are defined as

V = {x = (x(p0)
0 , x

(p0)
1 , . . . , x

(p0)
n0−1︸ ︷︷ ︸

n0

,

x
(p1)
0 , x

(p1)
1 , . . . , x

(p1)
n1−1︸ ︷︷ ︸

n1

, . . . ,

x
(pm−1)
0 , x

(pm−1)
1 , . . . , x

(pm−1)
nm−1︸ ︷︷ ︸

nm−1

)

| x ∈ Zn0
p0 × Zn1

p1 × · · · × Znm−1
pm−1

},

and

E = {(x, y), (y, x) | dH(x, y) = w, x, y ∈ V},

respectively.
In the following, we will present a novel injective arc

coloring rule for D̂. To do so, its arcs are partitioned into
several disjoint subsets. A color is assigned to each of the
arc partition such that the resulting coloring is an injective
arc coloring. Given any arc (x, y) ∈ E , let Cx−y denote the
set of the coordinates where two vectors x and y differ, i.e.,
Cx−y = {(j(i), pi) | x(pi)

j(i) ̸= y
(pi)

j(i) , j
(i) ∈ [0 : ni − 1], i ∈ [0 :

m − 1]}. Let Ce denote the set of nonzero coordinates in e,
where e = x− y and |Ce| = w. Let

Te ={t | t∈Zpi0
×Zpi1

× · · · × Zpiw−1
, i0≤ i1 ≤ · · · ≤ iw−1}

denote a set of vectors with length w, where non-
negative integers i0, i1, . . . , iw−1 are determined by Ce =
{(j(i0)α0 , pi0), (j

(i1)
α1 , pi1), . . . , (j

(iw−1)
αw−1 , piw−1)} and j(iu)

αu ∈ [0 :
niu − 1] for u ∈ [0 : w − 1]. The arc set E of D̂ can be
partitioned as

E =
⋃

e∈{x−y|(x,y)∈E}

Ee =
⋃

e∈{x−y|(x,y)∈E}

⋃
t∈Te

Ee,t, (3)

where

Ee = {(x, y) | (x, y) ∈ E , x− y = e},
Ee,t = {(x, y) | (x, y) ∈ E , x− y = e, y|Ce = t}

and the computations in the ith block are performed under
modulo pi with i ∈ [0 : m− 1].

The above arc partition leads to the following result.
Proposition 1: The assignment of a distinct color for each

subset Ee,t forms an injective arc coloring of D̂.
Proof: Let us consider Ee,t for any e and t defined above.

It can be seen that |Ee,t| > 1. Based on (3), for any two distinct
arcs (x1, y1), (x2, y2) ∈ Ee,t, we have{

x1 − y1 = x2 − y2 = e,
y1|Ce = y2|Ce = t.

This implies that x1|Ce = x2|Ce . Hence, dH(x1, y2) ≥
dH(x1|Ce , y2|Ce) = dH(x2|Ce , y2|Ce) = w. Let C′e denote
the set of zero coordinates in e. If dH(x1, y2) = w,
we have x1|C′e = y2|C′e since dH(x1, y2) = dH(x1|Ce , y2|Ce) +
dH(x1|Ce′ , y2|Ce′ ) = dH(x1|Ce , y1|Ce)+dH(x1|Ce′ , y2|Ce′ ) = w+
dH(x1|Ce′ , y2|Ce′ ) = w. Hence, x1|C′e = x2|C′e = y1|C′e = y2|C′e
and we have x1 = x2 and y1 = y2, which contradicts the

hypothesis. Therefore, dH(x1, y2) > w. Similarly, we also
have dH(x2, y1) > w. This implies that (x1, y2), (y2, x1),
(x2, y1) and (y1, x2) are not arcs of D̂. Therefore, the assign-
ment of a distinct color for each subset Ee,t forms an injective
arc coloring.

The following example illustrates the above property.
Example 4: Given m = 2, w = 1, p0 = 2, p1 = 3, n0 =

2 and n1 = 1, based on Definition 6, a regular digraph can be
constructed by defining its vertex set V and arc set E as

V = {x = (x(2)
0 , x

(2)
1︸ ︷︷ ︸

2

, x
(3)
0︸︷︷︸
1

) | (x(2)
0 , x

(2)
1 , x

(3)
0 ) ∈ Z2

2 × Z3}

= {000, 001, 002, 100, 101, 102, 010, 011, 012,
110, 111, 112}

and E = {(x, y), (y, x) | dH(x, y) = 1, x, y ∈ V} = {(000,
002), (002, 000), (002,001), (001, 002), (001, 101), (101, 001),
(102, 101), (101,102),(102, 100), (100, 102), (100, 000), (000,
100), (000, 001), (001,000), (100, 101), (101, 100), (002, 102),
(102, 002), (002, 012), (012, 002), (001, 011), (011, 001),
(000, 010), (010, 000), (112, 102), (102, 112), (110, 112),
(112, 110), (112, 012), (012, 112), (012, 010), (010, 012),
(010, 011), (011,010), (011, 111), (111, 011), (111, 110),(110,
111),(112, 111), (111, 112), (012, 011), (011, 012), (110, 010),
(010, 110), (110, 100), (100, 110), (111, 101), (101, 111)},
respectively. As a result, the regular digraph shown in Fig. 3
can be obtained. Let E010 denote an arc set such that x− y =
010 for any (x, y) ∈ E , i.e.,

E010 = {(010, 000), (011, 001), (012, 002), (110, 100), (111,
101), (112, 102), (000, 010), (001, 011),
(002, 012), (100, 110), (101, 111), (102, 112)}.

Note that for any (x, y) ∈ E010, we have Cx−y = C010 =
{(j(i), pi) | x(pi)

j(i) ̸= y
(pi)

j(i) , j
(i) ∈ [0 : ni − 1], i ∈ [0 : 1]} =

{(j(0)α0 , p0)} = {(1, 2)}. This implies that T010 = {t | t ∈
Zp0} = {t | t ∈ Z2} = {0, 1}. Based on (3), the arcs in E010
can be partitioned as

E010,0 = {(x, y) | (x, y) ∈ E010, y|C010 = 0} = {(010, 000),
(011, 001), (012, 002), (110, 100),
(111, 101), (112, 102)},

E010,1 = {(x, y) | (x, y) ∈ E010, y|C010 = 1} = {(000, 010),
(001, 011), (002, 012), (100, 110),
(101, 111), (102, 112)}.

Similarly, the remaining arcs can be partitioned in the same
manner. They are listed as follows.

E001,0 = {(001, 000), (101, 100), (011, 010), (111, 110)},
E001,1 = {(002, 001), (102, 101), (012, 011), (112, 111)},
E001,2 = {(000, 002), (100, 102), (010, 012), (110, 112)},
E002,0 = {(002, 000), (102, 100), (012, 010), (112, 110)},
E002,1 = {(000, 001), (100, 101), (010, 011), (110, 111)},
E002,2 = {(001, 002), (101, 102), (011, 012), (111, 112)},
E100,0 = {(100, 000), (110, 010), (101, 001), (111, 011),
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Fig. 3. 4-regular digraph.

(102, 002), (112, 012)},
E100,1 = {(000, 100), (010, 110), (001, 101), (011, 111),

(002, 102), (012, 112)}.

If each partitioned subset is assigned with a distinct color,
there will be 10 injective arc colors in the regular digraph,
which is shown in Fig. 4. Based on Theorem 1, it can yield
a (12, 12, 8, 10) PDA P0 that is defined at the bottom of the
next page. It can be seen that P0 can realize a coded caching
scheme with K = 12 users, the memory ratio M

N = 2
3 ,

the subpacketization level F = 12 and the transmission rate
R = 5

6 . Note that for the MN scheme that yields the same
number of users and memory ratio, its subpacketization level
and transmission rate are 495 and 4

9 , respectively. Therefore,
the coded caching scheme realized by P0 is advantageous in
the subpacketization level, but sacrifice the transmission rate.

B. New PDA Constructions via Injective Arc Coloring of
Regular Digraphs

The injective arc coloring of regular digraphs is employed
for PDA design. Before presenting the new PDAs, we first
introduce the following lemma, which is crucial to characterize
the property of our proposed PDAs.

Lemma 2: For the digraph D̂, χi(D̂) ≤
∑

e∈{x−y|(x,y)∈E}
pi0pi1 · · · piw−1 , where integers i0, i1, . . . , iw−1 are deter-
mined by Ce = {(j(i0)α0 , pi0), (j

(i1)
α1 , pi1), . . . , (j

(iw−1)
αw−1 , piw−1)}.

Proof: Given any e ∈ {x− y | (x, y) ∈ E}, based on (3),
it can be seen that the arc set Ee = {(x, y) | x−y = e, (x, y) ∈
E} is partitioned into pi0pi1 · · · piw−1 subsets since |Te| =
pi0pi1 · · · piw−1 . Hence, the total number of partitioned subsets
is

∑
e∈{x−y|(x,y)∈E} |Te| =

∑
e∈{x−y|(x,y)∈E} pi0pi1 · · · piw−1 .

Based on Proposition 1, the number of colors that allow
an injective arc coloring of D̂ is less than or equal to∑

e∈{x−y|(x,y)∈E} pi0pi1 · · · piw−1 .
Integrating Theorem 1 and Lemma 2, a new coded caching

scheme that is characterized by the following theorem can be
obtained.

Theorem 2: Given any w, ni,m ∈ N+ and distinct
positive integers p0, p1, . . . , pm−1 with pi ≥ 2 and
w < n0 + n1 + · · · + nm−1 for i ∈ [0 : m − 1],
there exists a (pn0

0 pn1
1 · · · p

nm−1
m−1 , pn0

0 pn1
1 · · · p

nm−1
m−1 ,

pn0
0 pn1

1 · · · p
nm−1
m−1 −

∑
A⊆X ,|A|=w

∏
p
(β)
α ∈A(pα − 1),∑

e∈{x−y|(x,y)∈E} pi0pi1 · · · piw−1 ) PDA which yields a
pn0
0 pn1

1 · · · p
nm−1
m−1 -division (pn0

0 pn1
1 · · · p

nm−1
m−1 ,M,N) coded

caching scheme with a memory ratio of

M

N
= 1−

∑
A⊆X ,|A|=w

∏
p
(β)
α ∈A(pα − 1)

pn0
0 pn1

1 · · · p
nm−1
m−1

and a transmission rate of

R =

∑
e∈{x−y|(x,y)∈E} pi0pi1 · · · piw−1

pn0
0 pn1

1 · · · p
nm−1
m−1

,

where

X = {p(0)
0 , p

(1)
0 , . . . , p

(n0−1)
0︸ ︷︷ ︸

n0

, p
(0)
1 , p

(1)
1 , . . . , p

(n1−1)
1︸ ︷︷ ︸

n1

, . . . ,

p
(0)
m−1, p

(1)
m−1, . . . , p

(nm−1−1)
m−1︸ ︷︷ ︸

nm−1

},

and integers i0, i1, . . . , iw−1 are determined by Ce =
{(j(i0)α0 , pi0), (j

(i1)
α1 , pi1), . . . , (j

(iw−1)
αw−1 , piw−1)}.

Proof: Let D̂ denote a regular digraph defined in
Definition 6. It can be seen that the number of vertices of
D̂ is |V| = pn0

0 pn1
1 . . . p

nm−1
m−1 . Given any vertex y ∈ V ,

it can be seen that the number of vertices x ∈ V such that
dH(x, y) = w is

∑
A⊆X ,|A|=w

∏
p
(β)
α ∈A(pα−1). Therefore, D̂

is a regular digraph with both the indegree and outdegree being∑
A⊆X ,|A|=w

∏
p
(β)
α ∈A(pα − 1). Together with the results of

Theorem 1 and Lemma 2, the conclusion can be reached.
In particular, let D denote a regular digraph defined in

Definition 6 with parameter m = 1. An upper bound on the
injective chromatic index of D can be obtained as follows,
which can be viewed as a special case of Lemma 2.

Corollary 1: For the digraph D, χi(D) ≤
(
n0
w

)
pw0 (p0−1)w.

Proof: Let D denote a digraph with vertex set V =
{x = (x0, x1, . . . , xn0−1) | x ∈ Zn0

p0 } and arc set E =
{(x, y), (y, x) | dH(x, y) = w, x, y ∈ V}. Note that the
cardinality of set {x− y | (x, y) ∈ E} is

(
n0
w

)
(p0− 1)w. Based

on (3), it can be seen that each Ee = {(x, y) | x−y = e, (x, y) ∈
E} is partitioned into pw0 subsets since |Te| = pw0 . This implies
that the total number of partitioned subsets is

(
n0
w

)
pw0 (p0−1)w,

i.e., the number of colors that allow an injective arc coloring
of D is less than or equal to

(
n0
w

)
pw0 (p0 − 1)w.

Based on Theorem 1 and Corollary 1, the following result
can be obtained, which can be seen as a special case of
Theorem 2.

Corollary 2: Given any n0, w, p0 ∈ N+ with p0 ≥
2 and w < n, there always exists a (pn0

0 , pn0
0 ,

pn0
0 −

(
n0
w

)
(p0 − 1)w,

(
n0
w

)
pw0 (p0 − 1)w) PDA which yields

a pn0
0 -division (pn0

0 ,M,N) coded caching scheme with a

memory ratio of M
N = 1 − (n0

w )(p0−1)w

p
n0
0

and a transmission

rate of R = (n0
w )(p0−1)w

p
n0−w
0

.

Proof: Let D denote a regular digraph defined above with
vertex set V and arc set E . Given any vertex y ∈ V , the number
of vertices x ∈ V such that dH(x, y) = w is

(
n0
w

)
(p0−1)w. This

implies that both the outdegree and indegree of each vertex
are

(
n0
w

)
(p0 − 1)w. Based on the results of Theorem 1 and

Corollary 1, the conclusion can be reached.
In fact, given the digraph D with parameters n0, w and

p0 such that p0 = 2 and n0 ≤ 2w − 1, the upper bound
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Fig. 4. 4-regular digraph with the number of injective arc coloring of 10.

on injective chromatic index described in Corollary 1 can be
further improved by vertex coloring. A vertex coloring of a
graph G is an assignment of colors to the vertices of G with
one color for each vertex, so that the adjacent vertices are
colored differently. The smallest number of colors needed in
a proper vertex coloring of graph G is called the chromatic
index of G, denoted by χ(G). It is well known that χ(G) ≤
1 + △(G) [32], where △(G) is the maximal degree of G.
In order to improve the upper bound on injective chromatic
index of D, we need the following lemma.

Lemma 3: Given the digraph D with parameters n0, w and
p0 such that p0 = 2 and n0 ≤ 2w − 1, let the arcs of D be
partitioned as

E =
⋃

e∈{x−y|(x,y)∈E}

Ee =
⋃

e∈{x−y|(x,y)∈E}

ge−1⋃
i=0

Ge,Di , (4)

where Ge,Di
= {Ee,ti | ti ∈ Di}, Di is a subset of Zw2 such

that dH(ti, tj) ≥ n0 − w + 1 for any ti, tj ∈ Di, and Zw2 =
D0∪D1∪· · ·∪Dge−1. Consequently, assigning a distinct color
for each subset Ge,Di

forms an injective arc coloring.
Proof: It is sufficient to prove that any two arcs at

a distance of exactly one in a directed path or in a com-
mon directed triangle receive distinct colors. Without loss
of generality, for any two arcs (x1, y1), (x2, y2) ∈ Ge,Di ,
if (x1, y1), (x2, y2) ∈ Ee,ti , based on Proposition 1, they
can be assigned with the same color. Now let us consider the
case (x1, y1) ∈ Ee,ti , (x2, y2) ∈ Ee,tj and ti ̸= tj . One needs

to prove that arcs (x1, y1) and (x2, y2) can also be assigned
with the same color. Based on (4), we obtain ti = y1|Ce and
tj = y2|Ce . Note that dH(ti, tj) ≥ n0−w+1. There must exist
a set A ⊆ Ce with |A| ≥ n0 − w + 1 such that y1|s ̸= y2|s
for any s ∈ A. Furthermore, it can be seen that x1|s = y2|s
and x2|s = y1|s for s ∈ A, since x1 − y1 = x2 − y2 = e and
p0 = 2. This implies that dH(x1, y2) = dH(x1|Ce , y2|Ce) +
dH(x1|[0:n0−1]\Ce , y2|[0:n0−1]\Ce) = dH(x1|Ce\A, y2|Ce\A) +
dH(x1|[0:n0−1]\Ce , y2|[0:n0−1]\Ce) ≤ w−(n0−w+1)+n0−w =
w − 1. Therefore, (x1, y2), (y2, x1) /∈ E . Following a similar
proof manner, it can also be concluded that (x2, y1), (y1, x2) /∈
E . Therefore, assigning a distinct color for each subset Ge,Di

forms an injective arc coloring.
Lemma 4: Given the digraph D with parameters n0, w and

p0 such that p0 = 2 and n0 ≤ 2w − 1, we have

χi(D) ≤


(
n0

w

)
2w−1, if n0 = 2w − 1;(

n0

w

)
(1 +

n0−w∑
i=1

(
w

i

)
), if n0 < 2w − 1.

Proof: Let D denote a digraph with vertex set V =
{x = (x0, x1, . . . , xn0−1) | x ∈ Zn0

2 } and arc set E =
{(x, y), (y, x) | dH(x, y) = w, x, y ∈ V}. Note that the arc
partition of D is E =

⋃
e∈{x−y|(x,y)∈E}

⋃
t∈Zw

2
Ee,t, where

Ee,t = {(x, y) | (x, y) ∈ E , x−y = e, y|Ce = t}. If n0 < 2w−1,
we can merge two subsets Ee,ti and Ee,tj for ti, tj ∈ Zw2 under
the condition of dH(ti, tj) ≥ n0 − w + 1.

Now let us determine the number of colors that allow an
injective arc coloring to D. If n0 = 2w − 1, we have w =
n0−w+1 ≤ dH(ti, tj) ≤ w. This implies that for any ti, tj ∈
Zw2 , two subsets Ee,ti and Ee,tj can be merged if and only if
dH(ti, tj) = w. That says for any ti, tj ∈ Zw2 , two subsets Ee,ti
and Ee,tj can be merged if and only if ti + tj = 1. Therefore,
each Ee is partitioned into 2w−1 subsets, where Ee = {(x, y) |
x−y = e, (x, y) ∈ E}. Note that the cardinality of set {x−y |
(x, y) ∈ E} is

(
n0
w

)
. Hence, the total number of partitioned

subsets is
(
n0
w

)
2w−1. Based on Lemma 3, it can be seen that

the number of colors that allow an injective arc coloring of D
is less than or equal to

(
n0
w

)
2w−1.

If n0 < 2w−1, we can determine the injective arc coloring
by using the vertex coloring of graph. Define a graph G with

P0 =



000 010 100 110 001 011 101 111 002 012 102 112
000 ∗ 1 9 ∗ 6 ∗ ∗ ∗ 4 ∗ ∗ ∗
010 0 ∗ ∗ 9 ∗ 6 ∗ ∗ ∗ 4 ∗ ∗
100 8 ∗ ∗ 1 ∗ ∗ 6 ∗ ∗ ∗ 4 ∗
110 ∗ 8 0 ∗ ∗ ∗ ∗ 6 ∗ ∗ ∗ 4
001 2 ∗ ∗ ∗ ∗ 1 9 ∗ 7 ∗ ∗ ∗
011 ∗ 2 ∗ ∗ 0 ∗ ∗ 9 ∗ 7 ∗ ∗
101 ∗ ∗ 2 ∗ 8 ∗ ∗ 1 ∗ ∗ 7 ∗
111 ∗ ∗ ∗ 2 ∗ 8 0 ∗ ∗ ∗ ∗ 7
002 5 ∗ ∗ ∗ 3 ∗ ∗ ∗ ∗ 1 9 ∗
012 ∗ 5 ∗ ∗ ∗ 3 ∗ ∗ 0 ∗ ∗ 9
102 ∗ ∗ 5 ∗ ∗ ∗ 3 ∗ 8 ∗ ∗ 1
112 ∗ ∗ ∗ 5 ∗ ∗ ∗ 3 ∗ 8 0 ∗



.
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vertex set V = [0 : 1]w such that there exists an edge between
two vertices ti and tj in V if and only if dH(ti, tj) ≤ n0−w.
Given any vertex ti ∈ V , the number of vertices of G that are
adjacent to ti is

∑n0−w
i=1

(
w
i

)
, i.e., G is a

∑n0−w
i=1

(
w
i

)
-regular

graph. As a result, one color can be assigned to each vertex of
G such that all adjacent vertices receive distinct colors. This
indicates that dH(ti, tj) ≥ n0 − w + 1 for any two vertices ti
and tj with the same color, i.e., two subsets Ee,ti and Ee,tj can
be merged. Based on the upper bound of chromatic number
of G, it can be seen that each Ee is partitioned into χ(G)
subsets, where χ(G) ≤ 1+

∑n0−w
i=1

(
w
i

)
. This implies that the

total number of partitioned subsets is less than or equal to(
n0
w

)
(1+

∑n0−w
i=1

(
w
i

)
). Based on Lemma 3, it can be seen that

the number of colors that allow an injective arc coloring of D
is less than or equal to

(
n0
w

)
(1 +

∑n0−w
i=1

(
w
i

)
).

Combined with Theorem 1 and Lemma 4, the following
coded caching scheme that achieves a smaller transmission
rate can be obtained.

Theorem 3: Given any n0, w, p0 ∈ N+ with p0 = 2 and
w < n0, there always exists a 2n0 -division (2n0 ,M,N) coded

caching scheme with a memory ratio of M
N = 1− (n0

w )
2n0 and a

transmission rate of

R =


(
n0
w

)
2n0−w+1

, if n0 = 2w − 1;(
n0
w

)
(1 +

∑n0−w
i=1

(
w
i

)
)

2n0
, if n0 < 2w − 1.

In fact, if each colored edge of a regular graph is replaced by
two reverse arcs with the same color, the strong edge coloring
of regular graphs can be viewed as a special injective arc
coloring of regular digraphs, as illustrated by Fig. 5. Therefore,
based on Theorem 1, some new coded caching schemes with
a linear subpacketization level can be obtained from some
existing strong edge coloring of regular graphs. A unitary
Cayley graph is a graph with vertex set Zn and edge set
E = {{i, j} | gcd(i−j, n) = 1, i, j ∈ Zn}, where gcd(i−j, n)
denotes the greatest common divisor between integers i − j
and n. It can be observed that a unitary Cayley graph is a
regular graph with degree ψ(n), where ψ(n) denotes the Euler
function, i.e., the number of integers that are less than n and
relatively prime to n. The strong chromatic index of Cayley
graphs is characterized as follows.

Lemma 5 [34]: Given any positive integer n = pn0
0 pn1

1 · · ·
p
nm−1
m−1 with prime factor pi ≥ 2 for i ∈ [0 : m−1], the strong

chromatic index of unitary Cayley graphs is nψ(n)
2m .

Based on Theorem 1 and Lemma 5, we have the following
result.

Theorem 4: Given any positive integer n =
pn0
0 pn1

1 · · · p
nm−1
m−1 with prime factor pi ≥ 2 for i ∈ [1 : m−1],

there always exists an (n, n, n − ψ(n), nψ(n)
2m ) PDA which

yields an n-division (n,M,N) coded caching scheme with a
memory ratio of M

N = 1 − ψ(n)
n and a transmission rate of

R = ψ(n)
2m .

It can be seen that the coded caching schemes characterized
in Theorems 2 and 3 and Corollary 2 require a high memory
ratio, even though they all exhibit a linear subpacketization
level. In the following subsection, we will show that the

memory ratios and subpacketization levels of the schemes in
Theorem 2 and Corollary 2 can be further reduced by using
the MDS code in the placement phase.

C. New PDA Schemes With Coded Placement

In a PDA, a “∗” is called useless, if it is not contained in any
subarray shown in C3-(b) of Definition 1. This indicates these
useless “∗”s cannot generate multicasting opportunities in the
delivery phase, i.e., they have no contributions in reducing
the transmission rate of a coded caching scheme realized by
the PDA and they result in both a high memory ratio and
a high subpacketization level. Therefore, if each column of
a (K,F,Z, S) PDA has Z ′ useless “∗”s, we can obtain a
new coded caching scheme with a smaller memory ratio and
subpacketization level by deleting these useless “∗”s and using
an (F, F − Z ′)q MDS code that is defined in a finite field
of size q. For the detailed implementation method, interested
readers can refer to [21].

Lemma 6 [21]: For any (K,F,Z, S) PDA P, if there exist
Z ′ useless “∗”s in each column, we can obtain an (F − Z ′)-
division (K,M,N) coded caching scheme with a memory
ratio of M

N = Z−Z′
F−Z′ and a transmission rate of R = S

F−Z′ .
The coding gain at each time slot is the same as the original
scheme realized by P.

Proof: If there exist Z ′ useless “∗”s in each column of
the (K,F,Z, S) PDA P, a new array P′ = (P′[j, k]), where
j ∈ [0 : F − 1] and k ∈ [0 : K − 1], can be obtained
by deleting the Z ′ useless “∗”s in each column of P. As a
result, each column of P′ has Z ′ blanks, F − Z integers
and Z − Z ′ “∗”s. Based on P′, the placement strategy in
Algorithm 1 can be modified as follows. Each file is divided
into F −Z ′ equal packets. They are then encoded by using an
(F, F −Z ′)q MDS code. The encoded packets are denoted as
W ′
n,0, . . . ,W

′
n,F−1 for each file Wn, where n ∈ [0 : N − 1].

Based on the caching strategy of Algorithm 1, each user k
caches Zk = {W ′

n,j | P′[j, k] = ∗, j ∈ [0 : F − 1],
n ∈ [0 : N − 1]}. Therefore, the memory ratio of each
user is M

N =Z−Z′
F−Z′ . In the delivery phase, we also use the

delivery strategy of Algorithm 1. For any request vector d,
based on Lines 6-7 of Algorithm 1 and the modified placement
strategy, each user can obtain F −Z ′ required coded packets.
The (F, F − Z ′)q MDS code guarantees that each user can
reconstruct its requested file after receiving F − Z ′ coded
symbols. Therefore, the transmission rate is R = S

F−Z′ .
Note that the operation field size q of Lemma 6 is O(F ),

implying that the size of each packet of files should approxi-
mate to log2 F bits. Therefore, the size of files in the server
must be greater than (F −Z ′) log2 F so that the transmission
rate of S

F−Z′ can be achieved. Given a (K,F,Z, S) PDA, ZF >
Z−Z′
F−Z′ and F > F − Z ′ always hold for any Z,F, Z ′ ∈ N+.
Therefore, the scheme in Lemma 6 has a smaller memory ratio
and subpacketization level than that of Lemma 1. Furthermore,
the scheme in Theorem 2 can be improved as follows.

Theorem 5: Given any w, ni,m ∈ N+ and distinct positive
integers p0, p1, . . . , pm−1 with pi ≥ 2 and w < n0 +
n1 + · · · + nm−1 for i ∈ [0 : m − 1], there always
exists a [pn0

0 pn1
1 · · · p

nm−1
m−1 −(1+

∑w−1
i=1

∑
A⊆X ,|A|=i

∏
p
(β)
α ∈A
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Fig. 5. (a) 3-regular graph with the number of strong edge coloring of 6; (b) 3-regular digraph with the number of injective arc coloring of 6.

(pα − 1))]-division (pn0
0 pn1

1 · · · p
nm−1
m−1 ,M,N) coded caching

scheme with a memory ratio of, as shown in the first equation
at the bottom of the next page, and a transmission rate of, as
shown in the second equation at the bottom of the next page,
where

X = {p(0)
0 , p

(1)
0 , . . . , p

(n0−1)
0︸ ︷︷ ︸

n0

, p
(0)
1 , p

(1)
1 , . . . , p

(n1−1)
1︸ ︷︷ ︸

n1

, . . . ,

p
(0)
m−1, p

(1)
m−1, . . . , p

(nm−1−1)
m−1︸ ︷︷ ︸

nm−1

},

and integers i0, i1, . . . , iw−1 are determined by Ce =
{(j(i0)α0 , pi0), (j

(i1)
α1 , pi1), . . . , (j

(iw−1)
αw−1 , piw−1)}.

Proof: Let P denote an array generated from the injec-
tive arc-colored regular digraph D̂. Based on the proof of
Proposition 1, it can be seen that a “∗” in entry P[x, y] is
useless if and only if dH(x, y) < w, where x, y ∈ V . Therefore,
the number of useless “∗”s in each column of P is

Z ′ =


1, if w = 1;

1 +
w−1∑
i=1

∑
A⊆X ,|A|=i

∏
p
(β)
α ∈A

(pα − 1), if w > 1.

Combined with the results of Lemma 6 and Theorem 2, the
conclusion can be reached.

Continued from Example 4, the following example further
illustrates the realization of the scheme in Theorem 5.

Example 5: Let P0 denote the PDA generated by the regular
digraph of Fig. 4. It can be seen that a “∗” of P0 is useless
if and only if dH(x, y) < 1, where x and y are the vertices
of the regular digraph. Hence, each column of P0 has one
useless “∗”s, i.e., the “∗”s in the main diagonal positions of
P0 are useless. Let P′0 denote an array obtained by deleting
these useless “∗”s. Based on Lemma 6, P′0 can realize a coded
caching scheme with K = 12 users and subpacketization level
of F = 11. Meanwhile, it yields a memory ratio of M

N = 7
11

and the transmission rate of R = 10
11 , which are in line with

Theorem 5.
Based on Corollary 2 and Lemma 6, the following corollary

can be obtained, which can be seen as a special case of
Theorem 5. Since its proof is similar to that of Theorem 5,
it is omitted.

Corollary 3: Given any n0, w, p0 ∈ N+ with p0 ≥ 2 and
w < n0, there always exists a [pn0

0 −
∑w−1
i=0

(
n0
i

)
(p0 − 1)i]-

division (pn0
0 ,M,N) coded caching scheme with a memory

ratio of M
N = 1 − (n0

w )(p0−1)w

p
n0
0 −

∑w−1
i=0 (n0

i )(p0−1)i
and a transmission

rate of R = (n0
w )pw

0 (p0−1)w

p
n0
0 −

∑w−1
i=0 (n0

i )(p0−1)i
.

To further show that the proposed coded caching schemes
of Theorems 4 and 5 can yield a small memory ratio, Fig. 6
plots how their memory ratios range as the number of users
increase. In most cases, a memory ratio of less than 0.5 can
be achieved.

Finally, it should be pointed out that if we consider a
regular digraph with vertex set V = Zn2 (or Zn3 ) and arc
set E = {(x, y), (y, x) | x, y ∈ V, dH(x, y) = w}, the
PDA constructions proposed in [24] can also be viewed
as an application of Theorem 1. The authors designed an
appropriate partition for the entries of an array to satisfy
the PDA constraints. Its partition rule can be seen as the
equivalent class of edges defined in [35]. Unlike previous
existing constructions, our proposed construction of PDAs
depends on the injective arc-colored regular digraphs, and
the corresponding arc partition rule is different with the one
of [35]. Furthermore, our proposed coded caching scheme in
Theorem 5 extends the scheme of [24] to the case with a
flexible number of users.

V. PERFORMANCE ANALYSES OF THE NEW SCHEMES

This section analyzes the proposed coded caching schemes
in terms of the subpacketization level and transmission rate.
They are compared with the existing schemes in Table I.

A. Comparison Between the Schemes in Theorem 5,
Corollary 3 and [1], [16], [17], [24]

We first consider the comparison between the schemes in
Theorem 5 and [1], [17]. Note that the expressions of the
memory ratio, transmission rate, and subpacketization level
are complex for the scheme in Theorem 5. It is challenging to
yield a conclusive analysis for its performance. Alternatively,
we numerically compare it with the existing ones of [1]
and [17] by taking the number of users K = 1536, 3072.
Figs. 7 and 8 characterize their subpacketization level and
transmission rate performances against the memory ratio.
It can be seen that with some sacrifice in the transmission
rate, our proposed scheme in Theorem 5 significantly reduces
the subpacketization level of the MN scheme. Meanwhile, for
some memory ratios that are greater than 0.5, our proposed
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Fig. 6. The minimum memory ratio M
N

vs. the number of users K of the
schemes in Theorems 4 and 5.

scheme in Theorem 5 has advantages in both the subpacke-
tization level and transmission rate when compared with the
MN scheme with grouping in [17].

We then consider the comparison between the schemes in
Corollary 3 and [24]. With p0 = 2, a coded caching scheme

in Corollary 3 can yield K = 2n0 , M
N = 1− (n0

w )∑n0
i=w (n0

i ) , F =∑n0
i=w

(
n0
i

)
, R = (n0

w )2w∑n0
i=w (n0

i ) . By letting w′ = n0 − w for the
scheme of [24] (which is also shown in Table I), it can be
observed that when p0 = 2, it will be the same as the scheme
in Corollary 3. Therefore, our scheme proposed in Corollary 3
generalizes the scheme of [24] and accommodates a more
flexible number of users.

We further compare our proposed scheme in Corollary 3
with the scheme of [16] in Table II. The parameters of the
scheme in Corollary 3 are parameterized by (n0, w, p0). It can
be seen that the proposed scheme in Corollary 3 has a smaller
subpacketization level, a slightly smaller memory ratio and a
lower transmission rate. Meanwhile, it can support more users.

B. Comparison Between the Schemes in
Theorem 4 and [1], [11]

We compare our proposed scheme in Theorem 4 with the
schemes of [1] and [11] in Table III. Note that the schemes in

TABLE II
COMPARISON BETWEEN THE SCHEME IN COROLLARY 3

AND THE SCHEME IN [16]

TABLE III
COMPARISON BETWEEN THE SCHEME IN THEOREM 4 AND THE SCHEMES

IN [1] AND [11]

Theorem 4 and [1], [11] are parameterized by (n), (k, t) and
(n,m, k, q), respectively. Table III shows that in comparison
with the scheme of [11], for the same number of users,
subpacketization level and memory ratio, our proposed scheme
in Theorem 4 has an advantage in the transmission rate.
Moreover, with the same number of users and a slightly
smaller memory ratio, our proposed scheme yields a smaller
subpacketization level than that of the scheme in [1] and [11].
But they are realized at the cost of some transmission rate.

C. Comparison Between the Schemes in Theorem 3, [16]
and [23]

We discuss the performance of our scheme in Theorem 3 by
comparing it with the ones of [16] and [23]. The parameters

M

N
=


1−

∑m−1
i=0 ni(pi − 1)

pn0
0 pn1

1 · · · p
nm−1
m−1 − 1

, if w = 1;

1−
∑
A⊆X ,|A|=w

∏
p
(β)
α ∈A(pα − 1)

pn0
0 pn1

1 · · · p
nm−1
m−1 − 1−

∑w−1
i=1

∑
A⊆X ,|A|=i

∏
p
(β)
α ∈A(pα − 1)

,

if w > 1,

R =



∑
e∈{x−y|(x,y)∈E} pi0

pn0
0 pn1

1 · · · p
nm−1
m−1 − 1

, if w = 1;∑
e∈{x−y|(x,y)∈E} pi0pi1 · · · piw−1

pn0
0 pn1

1 · · · p
nm−1
m−1 − (1 +

∑w−1
i=1

∑
A⊆X ,|A|=i

∏
p
(β)
α ∈A(pα − 1))

,

if w > 1,
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Fig. 7. Subpacketization level and transmission rate comparison between the schemes of Theorem 5 and [1], [17]. With K = 1536, for the scheme in
Theorem 5, p0 = 2, p1 = 3, n0 = 9, n1 = 1, m = 2 and w ∈ [2 : 9]; for the scheme of [1], k = 1536 and t ∈ [1 : 1535]; for the grouping scheme in [17],
k = 24, c = 64 and t ∈ [1 : 23].

Fig. 8. Subpacketization level and transmission rate comparison between the schemes in Theorem 5 and [1], [17]. With K = 3072, for the scheme in
Theorem 5, p0 = 2, p1 = 3, n0 = 10, n1 = 1, m = 2 and w ∈ [2 : 10]; for the scheme in [1], k = 3072 and t ∈ [1 : 3071]; for the grouping scheme
in [17], k = 24, c = 128 and t ∈ [1 : 23].

TABLE IV
COMPARISON BETWEEN THE SCHEME IN THEOREM 3 AND THE

SCHEMES IN [16] AND [23]

of the schemes in Theorem 3, [16] and [23] are written as
(m, a, b, λ), (n0, w) and (r, k, z), respectively. Table IV shows
that in comparison with the schemes of [16], our proposed

scheme in Theorem 3 yields a smaller subpacketization level,
a slightly smaller memory ratio and a lower transmission rate.
Meanwhile, it is capable to serve more users. When comparing
with the scheme of [23], with the same number of users and
subpacketization level, our proposed scheme in Theorem 3 has
transmission rate advantage.

VI. CONCLUSION

This paper has investigated the design of a PDA with the
same number of rows and columns through the perspective
of graph coloring, i.e., the injective arc coloring of a regu-
lar digraph. From this perspective, designing coded caching
schemes with a linear subpacketization level can be converted
into determining the number of colors that allow an injective
arc coloring to the regular digraphs. Based on this compre-
hension, we have defined a new class of regular digraphs and
derived the upper bounds for the digraphs’ injective chromatic
index. Consequently, three new coded caching schemes that
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can support a flexible number of users have been obtained
with a linear subpacketization level and a relatively small
transmission rate.
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